Cantor-bernstein Theorem for Lattices

نویسنده

  • Ján Jakubík
چکیده

This paper is a continuation of a previous author’s article; the result is now extended to the case when the lattice under consideration need not have the least element.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On interval homogeneous orthomodular lattices

An orthomodular lattice L is said to be interval homogeneous (resp. centrally interval homogeneous) if it is σ-complete and satisfies the following property: Whenever L is isomorphic to an interval, [a, b], in L then L is isomorphic to each interval [c, d] with c ≤ a and d ≥ b (resp. the same condition as above only under the assumption that all elements a, b, c, d are central in L). Let us den...

متن کامل

CantorBernstein property

The classical Cantor–Bernstein theorem says that two sets X;Y which admit injective mappings X ! Y and Y ! X have the same cardinality. We obtain a di¤erent problem when the sets are equipped with an additional structure which should be preserved by the mappings (isomorphisms). It has been generalized to boolean algebras by Sikorski and Tarski: For any two -complete boolean algebras A and B and...

متن کامل

Direct Product Decompositions of Infinitely Distributive Lattices

Let α be an infinite cardinal. Let Tα be the class of all lattices which are conditionally α-complete and infinitely distributive. We denote by T ′ σ the class of all lattices X such that X is infinitely distributive, σ-complete and has the least element. In this paper we deal with direct factors of lattices belonging to Tα. As an application, we prove a result of Cantor-Bernstein type for latt...

متن کامل

Boolean and Central Elements and Cantor-Bernstein Theorem in Bounded Pseudo-BCK-Algebras?

Georgescu and Iorgulescu [3] introduced pseudo-BCK-algebras (in a slightly different way) as a non-commutative generalization of BCK-algebras, in the sense that if →= , then the algebra (A,→, 1) is a BCK-algebra. Pseudo-BCK-algebras relate to (non-commutative) residuated lattices as BCK-algebras do to commutative residuated lattices; specifically, by [6], pseudoBCK-algebras are just the 〈→, , 1...

متن کامل

A Cantor-Bernstein Theorem for Paths in Graphs

As every vertex of this graph has one “outgoing” and at most one “incoming” edge, each of those components is a cycle or an infinite path. In each of these paths and cycles we now select every other edge to mark the desired bijection. The Cantor-Bernstein problem, rephrased as above for graphs, has a natural generalization to paths. Let G be any graph, and let A and B be disjoint sets of vertic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002